Role of CD8+ T cells in protection against Leishmania donovani infection in healed Visceral Leishmaniasis individuals
نویسندگان
چکیده
BACKGROUND Majority of individuals with history of visceral leishmaniasis (VL) exhibit strong immunity to re-infection, however, the mechanism of resistance is poorly understood. It is unclear whether CD8(+) T cells contribute to protection against Leishmania donovani infection through cytotoxic activity. The present study aims to evaluate immunological mechanism associated with resistance to the disease in healed VL (HVL) individuals and further, the contribution of CD8(+) T cells in the protective immunity. METHODS Peripheral blood mononuclear cells (PBMCs) from VL, HVL and naive groups were exposed in vitro to total soluble Leishmania antigen (TSLA) from L. donovani. The proliferation index was determined by ELISA based lymphoproliferative assay. Cytokines and granzyme B levels were measured by CBA. Activated T-cell populations were estimated using flow cytometry. RESULTS We observed significantly higher lymphoproliferation, cytokines and granzyme B levels in HVL group compared to naive or VL group. More strikingly, we found a strong association (rs = 0.895, P < 0.0001) between proliferation index (PI) and granzyme B level, with a significant proportion of activated CD8(+) T cells in HVL group. CONCLUSIONS Leishmania immune group (HVL) exhibited durable and strong cellular immune response to TSLA in terms of lymphoproliferation as well as production of Th1 cytokines and granzyme B. Additionally, the elevated level of activated CD8(+) T cells and stimulation of cytotoxic activity through granzyme B production, indicated a possible role of CD8(+) T cells in resistance to L. donovani infection in the HVL group.
منابع مشابه
B7-H1 Blockade Increases Survival of Dysfunctional CD8+ T Cells and Confers Protection against Leishmania donovani Infections
Experimental visceral leishmaniasis (VL) represents an exquisite model to study CD8(+) T cell responses in a context of chronic inflammation and antigen persistence, since it is characterized by chronic infection in the spleen and CD8(+) T cells are required for the development of protective immunity. However, antigen-specific CD8(+) T cell responses in VL have so far not been studied, due to t...
متن کاملGene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs
Currently no effective vaccine is available for human visceral leishmaniasis(VL) caused by Leishmania donovani. Previously, we showed that centrin1 and p27gene deleted live attenuated Leishmania parasites (LdCen1(-/-) and Ldp27(-/-)) are safe, immunogenic and protective in animal models. Here, to assess the correlates of protection, we evaluated immune responses induced by LdCen1(-/-) and Ldp27...
متن کاملChronic Leishmania donovani infection promotes bystander CD8+-T-cell expansion and heterologous immunity.
It has been proposed that long-lived memory T cells generated by vaccination or infection reside within a memory compartment that has a finite size. Consequently, in a variety of acute infection models interclonal competition has been shown to lead to attrition of preexisting memory CD8+ T cells. Contrary to expectations, therefore, we found that chronic Leishmania donovani infection of Listeri...
متن کاملGenetically Engineered Ascorbic acid-deficient Live Mutants of Leishmania donovani induce long lasting Protective Immunity against Visceral Leishmaniasis
Visceral leishmaniasis caused by Leishmania donovani is the most severe systemic form of the disease. There are still no vaccines available for humans and there are limitations associated with the current therapeutic regimens for leishmaniasis. Recently, we reported functional importance of Arabino-1, 4-lactone oxidase (ALO) enzyme from L. donovani involved in ascorbate biosynthesis pathway. In...
متن کاملHyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol.
Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice ...
متن کامل